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Electronic states in the one-dimensional �1D� doped Hubbard model are described by superposition of
optimized nonorthogonal Slater determinants �S-dets�. Analysis on the S-dets allows us to visualize quantum
fluctuations. In the weak and intermediate interaction regimes, quantum fluctuations are described by transla-
tion and breathing motions of spin-charge coupled defects called polarons as well as spin-charge decoupled
defects called holons and spinons. In the strong-interaction regime, on the other hand, spin and charge fluc-
tuations are mostly separated as spinons and holons, especially in the lightly doped systems ��=0.08�. In the
highly doped systems ��=0.24�, polarons also play an important role. Finally, it is shown that in the 1/3-filled
systems, the concepts of holon, spinon, and polaron do not work anymore. The electronic structure is qualita-
tively described by mixtures of two different density waves having triple periodicity to the lattice. The domains
of these different density waves make quantum fluctuations.
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I. INTRODUCTION

Quantum fluctuations in low-dimensional electron sys-
tems have been one of the central issues in the condensed
matters physics. A spin-charge separation is a good example
showing unconventionality of elementary excitations in low
dimensions. In the case of the one-dimensional �1D� Hub-
bard model, the wave function is exactly factorized into the
spin and charge degrees of freedom in the strong-interaction
limit.1,2 On the other hand, in the weak-interaction limit, this
model corresponds to a so-called Hückel model, and an elec-
tron or hole, which has both the spin and charge degrees of
freedom, becomes a carrier. However, real materials do not
lie in such extreme limits, and it is still controversial how the
spin and charge behave in the realistic interaction regime.
For example, two branches, corresponding to the spin and
charge degrees of freedom, have been observed in the angle-
resolved photoemission spectroscopy �ARPES� experiments
on the 1D copper oxides.3 However, at the same time, these
experiments, as well as other ARPES results,4,5 have sug-
gested more complicated behaviors of elementary excita-
tions. Specifically, broad peaks in the ARPES data suggest a
significant spin-charge coupling in the 1D correlated electron
systems.6 So far, most of the theoretical and experimental
researches have focused on separation of spin and charge
degrees of freedom because of its unconventionality. How-
ever, in real materials, situations should be more compli-
cated, and spin-charge coupling may play an important role.
One of the purposes of the present research is to clarify the
spin and charge behaviors in the 1D electron systems
through the quantum fluctuations.

The spin-charge coupling �or decoupling� has also been
attracting considerable attention in the quasi-two-
dimensional �quasi-2D� high TC cuprates. We have quite con-
trastive ideas on the mechanism of the high TC superconduc-
tivity, based on the resonating valence bond7 and spin bag,8

as well as the perturbation approach from the weak-
interaction limit.9 The research on the spin-charge behaviors
in the 1D electron systems is important because it would

help us to understand the carriers in the high TC cuprates,
which have similar structures to the 1D cuprates such as
SrCuO2 or Sr2CuO3. In fact, the ARPES results on the
quasi-2D copper oxides have similar broad peaks to the 1D
cuprates.10,11

These low-dimensional electron systems are also known
for strong nonlinear optical responses,12,13 and they are ex-
pected to function as devices, such as optical switches.
Therefore, it is important to clarify how the nature of quan-
tum fluctuations changes with the interaction strength or
doping in order to further understand the electronic struc-
tures in these materials.

In this research, quantum fluctuations in the 1D doped
Hubbard model are clarified by using the resonating Hartree-
Fock �res-HF� method.14 So far, many sophisticated theories,
such as the quantum Monte Carlo,15 variational Monte
Carlo,16 and density-matrix renormalization group17 meth-
ods, have been developed and applied to physics and chem-
istry. In addition, as far as the 1D Hubbard model is con-
cerned, we have the exact solution.18,19 However, this does
not mean that we know everything about the 1D Hubbard
system. Specifically, the nature of the quantum fluctuations
in the doped systems remains an interesting yet controversial
issue. Quantum fluctuations, which are intrinsic to interact-
ing many-particle systems beyond the mean-field picture, are
usually described by multiconfigurations, such as the path
integration and configuration interactions. However, it has
been quite difficult to obtain a physical picture on the quan-
tum fluctuations from the conventional methods, though they
have often reproduced the correlation structures or correla-
tion energies very well. Thus, a direct description of the
quantum fluctuations by the res-HF method would represent
an important step toward a better understanding of the com-
plicated physics in interacting many-particle systems. In the
following sections, not only spin and charge behaviors but
also general features of quantum fluctuations are clarified at
different doping ratios and different interaction strengths.

The present paper is organized as follows. In Sec. II, the
res-HF method is introduced, and we will show the reason
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why this method is suitable for the direct description or vi-
sualization of the quantum fluctuations. In Sec. III, the
method is applied to the 1D doped Hubbard model. Here, we
will demonstrate how the nature of quantum fluctuations de-
pends on the interaction strength and doping. A brief sum-
mary is given in Sec. IV.

II. METHOD

In the res-HF theory, a many-electron wave function is
constructed by superposition of nonorthogonal Slater deter-
minants �S-dets�, such as

��� = �
n=1

NS

Cn�
S

PS��n� . �1�

Here, NS represents the number of constituting S-dets. The
molecular orbitals of all the constituting S-dets ��n�, as well
as their superposition coefficients Cn, are simultaneously op-
timized to minimize the res-HF energy ���H���. Nonor-
thogonal S-dets mutually incorporate the full electron exci-
tation effects from other S-dets, and therefore, the res-HF
wave function can describe large quantum fluctuations
efficiently.20,21 In this method, the different orbitals for dif-
ferent spin �DODS�-type S-dets are employed. The DODS-
type S-det can describe the symmetry-broken state, such as
the spin-density wave �SDW� or defects in the SDW, which
play an important role in strongly correlated electron sys-
tems. On the other hand, the wave function itself should hold
the original symmetries of the system. So far, it has been
difficult to construct a reliable and symmetry-conserved
many-electron wave function from the DODS-type S-dets. In
the res-HF method, to recover these original symmetries, the
symmetry projections are adopted for each S-det. For ex-
ample, let us assume that the operator T makes a translation
of the broken-symmetry S-det ��� by one site. Then, Tm���
�m=0,1 , . . . ,N−1� are energetically degenerate. The set of
�Tm���� is called a Goldstone set of ���. The original trans-
lation symmetry of the system is recovered by superposition
of the Goldstone set.22 In Eq. �1�, PS symbolically represents
these spatial and spin symmetry projections.23 Thus, we can
construct the symmetry-conserved wave function with
symmetry-broken S-dets. Here, when we say a res-HF wave
function is constituted of NS S-dets, we should note that sym-
metry projections are applied to each S-det. As a result, we
superpose much more S-dets than NS in actual calculations
�for example, NS�1500 S-dets for N=50 systems�. The or-
bital optimization is carried out for NS S-dets to minimize the
expectation value of Hamiltonian, taking the symmetry pro-
jections into account. More details of the res-HF method are
given in Ref. 24. The important feature of this method is that
we can directly obtain a physical picture on the quantum
fluctuations by analyzing the optimized S-dets. Furthermore,
the res-HF method has no restriction on the band filling or
dimensions. So far, this method has been successfully ap-
plied to largely deformed nuclei,25 an ab initio calculation on
a CO molecule,21 and an interacting electron system.24

III. RESULTS AND DISCUSSION

Here, the res-HF method is applied to the 1D doped Hub-
bard model. Hamiltonian is given by

H = − t�
l,�

N

�al,�
† al+1,� + al+1,�

† al,�� + U�
l

N

nl,↑nl,↓, �2�

where N represents the system size. The number of electrons
is denoted by Ne. Here, the periodic boundary condition is
imposed, and therefore, the wave function is constructed to
hold the DN symmetry. In the following calculations, the
res-HF wave functions are generated by NS=25 S-dets.

First, to check the accuracy of the res-HF wave functions,
their energies are compared with the exact Lieb-Wu
solutions.18,26 In Fig. 1, the ratio of the explained correlation
energy is shown for N=50 and Ne=46, which is defined by

� =
E�RHF� − E�res-HF�
E�RHF� − E�exact�

� 100, �3�

where E�RHF�, E�exact�, and E�res-HF� denote the energies
of the restricted Hartree-Fock, exact, and res-HF solutions,
respectively. In general, the correlation energy becomes larg-
est in the intermediate interaction regime �U / t	4.5� since
both quantum fluctuations in the weak and strong-interaction
regimes coexist. In fact, as will be shown below, there exist
quantum fluctuations due to Bloch-type states and spin-
charge decoupled states in this interaction regime. Neverthe-
less, we can see that the res-HF wave functions explain more
than 85% of the correlation energies in all the interaction
regimes. The explained correlation energies are increased
with the increase in NS. As an example, in Fig. 2, NS depen-
dence of � is shown for U / t=4.5. We have checked that
further increase in NS does not affect the physical pictures
mentioned below, though it increases �. Therefore, from
these res-HF wave functions with NS=25 S-dets, we can
safely obtain reliable physical pictures on the quantum fluc-
tuations in the doped Hubbard model.

In the previous paper, we showed that the spin projection
significantly improves a res-HF wave function. In fact, the
res-HF ground states are energetically lower than those ob-
tained by the variational Monte Carlo method.16,24 We have
shown that not only the correlation energies but also the

FIG. 1. U / t dependence of the correlation energy explained by
the res-HF wave functions.
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correlation structures are well described by the res-HF wave
functions. On the other hand, the main purpose of the present
research is to clarify quantum fluctuations in the doped Hub-
bard model systematically.

Now, we analyze the S-dets. The charge density �CD� and
SD of the S-det ����� at lth site are defined by

Cl = ���al↑
† al↑ + al↓

† al↓��� − 1.0,

Sl = ���al↑
† al↑ − al↓

† al↓��� , �4�

respectively. The uniform SDW is represented by Cl=0 and
Sl= �−1�l−1s�, where s� denotes the amplitude of the SDW.
We have an energetically degenerate SDW with the opposite
phase, denoted by Cl=0 and Sl= �−1�ls�. In the previous
paper,24 we showed that defects connecting these degenerate
SDW’s work as very important quantum fluctuations in the
half-filled Hubbard model. In the doped case, as shown be-
low, we have a significant modulation in the CD as well as
the SD. To see this modulation in the CD �or SD�, Cl �or Sl�
is divided into its net and alternating components, NCD and
ACD �or NSD and ASD�, such as

Cl = NCD�l� + �− 1��l−1�ACD�l� ,

Sl = NSD�l� + �− 1��l−1�ASD�l� . �5�

The phase of the SDW changes where the ASD�l� changes
its sign.

Here, we show U / t dependence of quantum fluctuations
for N=50 and Ne=46 
�= �N−Ne� /N=0.08�. In Fig. 3, we
show three typical S-dets, chosen from the res-HF wave
functions for U / t=3�a�, 6�b�, and 10�c�. In these figures,
points where the ASD changes its sign, which means the
SDW changes its phase, are denoted by black circles or black
squares. Around a black circle, the NSD does not have a
significant component, while we can see a large NCD com-
ponent �its absolute value corresponds to a hole density�.

This topological defect in the SDW phase is usually called a
holon. On the other hand, around a black square, we can see
a large NSD component without a significant NCD compo-
nent. This defect is called a spinon. In addition to these ho-
lons and spinons, we can see a spin-charge coupled defect
denoted by a white circle. At a white circle, the ASD�l�
touches the horizontal line of ASD=0, and both the NSD and
NCD have significant components around it. This defect is
called a polaron. Here, this polaron can be regarded as a
bound state of a holon and a spinon. The orbital optimization
for a res-HF state causes a little modification from the one-
body orbitals. However, fortunately, this modification is not
so large, and we can also use the above definitions for the
holon, spinon, and polaron in the res-HF picture.

In the case of U / t=3.0�a�, the S-det shown in Fig. 3 in the
left panels �a-1� has holons and spinons, while the other two
S-dets at the center �a-2� and right �a-3� panels have polarons
as well as holons and spinons. The important feature in the
weak-interaction regime is that all the S-dets have delocal-
ized NCD components spreading over a whole system, as
shown at the bottoms of �a-1�, �a-2�, and �a-3� in Fig. 3.
Thus, our results indicate that not only the polarons and ho-
lons but also the Bloch-type states can be charge carriers in
the weak-interaction regime. We should note that finite NCD
components around black squares �spinons� mainly come
from these delocalized Bloch-type states, polarons, and ho-
lons. The rest of NS=25 S-dets have similar structures, hav-
ing different numbers of holons, spinons, and polarons with
different distances. Since these defects break translation
symmetry, we superpose the Goldstone set22 of each S-det,
which have the same molecular orbitals as the original S-det
but the positions of the defects are totally shifted site by site,
as explained in Sec. II. Thus, from the above res-HF results,
the quantum fluctuations in the weak-interaction regime can
be described by the translation and breathing motions of ho-
lons, spinons, and polarons, with the background of the itin-
erant Bloch-type states.

In the case of U / t=6�b�, on the other hand, we cannot see
the delocalized NCD component as shown at the bottoms of
�b-1�, �b-2�, and �b-3� in Fig. 3. The Bloch-type state disap-
pears at about U / t=5. There still exist polarons in some
S-dets as shown in the right panels �b-3�, but the number of
polarons is significantly decreased. These results clearly
show that spin-charge separation is developing with the in-
crease in the interaction strength.

In the case of U / t=10�c�, the number of polarons is fur-
ther decreased. Most of the S-dets contain only holons and
spinons. The S-det shown in the right panels �c-3� includes
the spin-charge coupled states, which are denoted by a gray
circle and a gray square. It seems difficult to identify these
states, but it is suggested that they would be a polaron split-
ting into a holonlike state �gray circle� and a spinonlike state
�gray square�, though they still have both spin and charge
components. A spinon denoted by a black square is in be-
tween these decoupling states. Thus, polarons become un-
stable compared to holons and spinons in the strong-
interaction regime. The rest of the S-dets have similar
structures to these three S-dets. From the present results, we
can conclude that the quantum fluctuations due to the trans-
lation and breathing motions of spinons and holons become

FIG. 2. NS dependence of the correlation energy explained by
the res-HF wave functions for U / t=4.5.
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FIG. 3. �Color online� Structures of typical three of NS=25 S-dets generating the res-HF wave functions for U / t=3�a�, U / t=6�b�, and
U / t=10�c�.
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dominant in the strong-interaction regime, though the spin-
charge coupled states still exist.

Figure 4 shows the U / t dependence of the number of
polarons. In the res-HF method, the expectation value of this
number �Nc� is obtained by

�Nc� =

�
n=1

NS

pnNn
c

�
n=1

NS

pn

, �6�

where Nn
c is the number of polarons in the nth S-det. pn

denotes the probability to find the nth S-det in the res-HF
wave function, which is given by

pn = ����
S

PS��n� . �7�

In Fig. 4, only the polaronlike states are taken into ac-
count, while the Bloch-type states are not included as it is
complicated to estimate the number of the delocalized
Bloch-type states. To make this point clear, the expectation
values in the weak and intermediate interaction regimes
�U / t�5�, where the S-dets have the Bloch-type states, are
plotted by gray circles. Therefore, we should note that the
actual number of the spin-charge coupled states including the
Bloch-type states is larger than the values of the gray circles.
The number of these Bloch-type states increases with the
decrease in U / t. The rough behavior of the total number of
the spin-charge coupled states is suggested by the dashed
line. From Fig. 4, we can see that the number of polarons is
very small in the strong-interaction regime, which indicates
that the quantum fluctuations due to holons and spinons are
dominant in this interaction regime. On the other hand, the
number of polarons increases with the decrease in U / t. In
addition, the Bloch-type states appear below U / t=5, and
therefore, the quantum fluctuations due to these spin-charge
coupled states also become important in the weak and inter-
mediate interaction regimes.

In literature,27 the energies of holons and polarons were
compared in the framework of a projected Hartree-Fock �HF�
approximation. In this method, a wave function is generated

by a superposition of a Goldstone set of a single symmetry-
broken S-det. They have concluded that holons are lower
states than polarons in all the interaction regimes, and their
energy difference increases with the increase in U / t. These
results qualitatively agree with our res-HF results that po-
larons do not make dominant quantum fluctuations in all the
interaction regimes, and the number of polarons decreases
with the increase in U / t. In the res-HF method, multiple
independent S-dets are employed and their orbitals are opti-
mized with taking symmetry projections into account. There-
fore, the res-HF method goes beyond the projected HF ap-
proximation. Or, we can say that the res-HF method is a
natural extension of the projected HF approximation. We
have shown that the res-HF wave functions contain both ho-
lons and polarons. It indicates that resonance or quantum
interference among these states lowers the many-body
ground state. A single S-det cannot explain such a resonance
of different states. Quantum fluctuations due to polarons are
not negligible especially in the weak and intermediate inter-
action regimes.

Here, we discuss the ARPES experiments. In the ARPES
on SrCuO2, they have concluded that two branches corre-
sponding to holons and spinons are observed.3 However, the
ARPES data seem to have a more complicated aspect of the
strongly correlated electron systems. As aforementioned, the
ARPES data on the 1D correlated materials have broad peaks
of the order of 1 eV, which indicate the importance of the
incoherent component originating from the spin-charge cou-
pling. These results are natural since the spin-charge separa-
tion is complete only in the strong-interaction limit. Real
materials do not usually lie in such an extreme limit. In the
experiment, all we know is a response on a perturbation
added to the system. We cannot directly see the ground state
itself. The ARPES also reflects the dynamical nature of in-
teracting electrons. As a result, the ARPES data inevitably
incorporate the incoherent components due to the scattering
of a photoelectron �or a photocreated hole left in the solid�
and elementary excitations, in addition to the coherent band
component. This is not a drawback of the ARPES but is a
merit to understand the many-body effects. On the other
hand, so far, we have clarified the static quantum fluctuations
in the realistic interaction regimes. By connecting these static
fluctuations to the responses of perturbations, the under-
standing of the strongly correlated electron systems will be-
come deeper. Our results have shown that quantum fluctua-
tions due to holons and spinons are dominant in all the
interaction regimes. These holons and spinons will make dif-
ferent branches in the ARPES peaks. However, at the same
time, we have small but finite quantum fluctuations due to
spin-charge coupled states. This intrinsic spin-charge cou-
pling is important when we consider the responses on the
external perturbations. For example, the perturbation on the
charge degree of freedom can induce the spin excitations via
the spin-charge coupled states. Since the 1D correlated ma-
terials have low energy magnetic excitations near k=0, finite
spin-charge coupling causes the multiple magnetic excita-
tions accompanied by the photoemission of an electron. In
fact, the author previously showed that a broad ARPES peak
is dominated by these many-body effects due to the spin-
charge coupling.6 Thus, we can comprehensively understand

FIG. 4. U / t dependence of the number of spin-charge-coupled
states for N=50 and Ne=46.
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how spin-charge separation and coupling work in the ARPES
data of the 1D electron systems by connecting the present
results to the experiments.

Next, to see the doping dependence of quantum fluctua-
tions, we show in Fig. 5 the structures of three typical S-dets
for N=50 and Ne=38��=0.24� at U / t=10. In the strong-
interaction regime with Ne=46��=0.08�, the quantum fluc-
tuations due to holons and spinons are dominant, as shown in
Fig. 3�c�. On the other hand, from Fig. 5, we can see many
polarons as well as holons. The rest of the S-dets have the
similar structures. Therefore, we can say that the number of
the spin-charge coupled states increases with the increase in
the doping.

When we further increase the doping, the nature of quan-
tum fluctuations changes drastically. The concepts of holons,
spinons, and polarons in the SDW do not work anymore. In
Fig. 6, we show the spin and charge densities of two different

HF states for N=48, Ne=32��=1 /3�, and U / t=6. Their spin
structures are described by �↑,↑,↓ ,↑,↑ , ↓ , . . .� �a� �hereafter re-
ferred to as state A� and �↑ , ↓ , · , ↑ , ↓ , · , . . .� �b� �hereafter
referred to as state B�. Both states have triple periodicity to
the lattice, which comes from the nesting of the Fermi sur-
face in the 1/3-filled electron systems. In the HF approxima-
tion, state A has a lower energy than state B in all the inter-
action regimes. We have also checked that the projected HF
approximation does not change their energy relation. State A
has a lower energy than B even after the symmetry projec-
tions. On the other hand, the res-HF wave function shows
that the many-body ground state is qualitatively described by
mixtures of these two states. In Fig. 7, three typical S-dets
generating the res-HF wave function are shown, where all
the parameters are the same as in Fig. 6. From Fig. 7, we can
see that the dominant electronic structure is close to state B.
Figures 7�a� and 7�b� show that small domains of state A are
inserted �circles�, while Fig. 7�c� shows another defect which
simply reduces the amplitude of the spin density. The rest of
the S-dets have similar structures to these three S-dets given
in Fig. 7. Such a reverse in the energy relation sometimes
occurs in strongly correlated electron systems. A famous ex-
ample is that the bond alternation in the 1D system is stabi-
lized by the on-site Coulomb repulsion, which is contrary to
the HF picture.28 In the present case, the res-HF wave func-
tion shows that the B-type ground state is stabilized by the
translation and breathing motions of small domains of state
A, as well as those motions of defects reducing the spin
density, due to their resonance. This is an interesting many-
body effect beyond the �projected� HF approximation, and
the res-HF method gives a physical picture on this many-
body effect through the quantum fluctuations.

IV. SUMMARY

We have succeeded to visualize the quantum fluctuations
in the 1D doped Hubbard model. Especially, the spin-charge
behaviors have been consistently explained from the strong
to the weak-interaction regimes. In the case of �=0.08, the

FIG. 5. �Color online� Structures of three
typical S-dets generating the res-HF wave func-
tion for U / t=10 and Ne=38.

FIG. 6. Two different HF states referred to as A �a� and B �b� in
the text for U / t=6, N=48, and Ne=32.

NORIKAZU TOMITA PHYSICAL REVIEW B 79, 075113 �2009�

075113-6



quantum fluctuations are described mainly as the translation
and breathing motions of holons and spinons in the strong-
interaction regime, while those due to polaron as well as
holons and spinons are important in the weak and interme-
diate interaction regimes. In the case of �=0.24, the quantum
fluctuations due to polarons become important even in the
strong-interaction regime. In the case of �=1 /3, we have
shown that the concepts of holons, spinons, and polarons do
not work anymore. The many-body ground state has state

B-type electron structure with quantum fluctuations due to
domains of state A.
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FIG. 7. Structures of three typical S-dets generating the res-HF wave function for U / t=6, N=48, and Ne=32.
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